Nano-structure fabrication of GaAs using AFM tip-induced local oxidation method: different doping types and plane orientations

نویسندگان

  • Jung-Joon Ahn
  • Kyoung-Sook Moon
  • Sang-Mo Koo
چکیده

In this study, we have fabricated nano-scaled oxide structures on GaAs substrates that are doped in different conductivity types of p- and n-types and plane orientations of GaAs(100) and GaAs(711), respectively, using an atomic force microscopy (AFM) tip-induced local oxidation method. The AFM-induced GaAs oxide patterns were obtained by varying applied bias from approximately 5 V to approximately 15 V and the tip loading forces from 60 to 180 nN. During the local oxidation, the humidity and the tip scan speed are fixed to approximately 45% and approximately 6.3 μm/s, respectively. The local oxidation rate is further improved in p-type GaAs compared to n-type GaAs substrates whereas the rate is enhanced in GaAs(100) compared to and GaAs(711), respectively, under the identical conditions. In addition, the oxide formation mechanisms in different doping types and plane orientations were investigated and compared with two-dimensional simulation results.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Si/SiGe Nanostructures Fabricated by Atomic Force Microscopy Oxidation

In this work, local AFM oxidation technique in a controlled humidity environment has been used to create small features in strained SiGe alloys. When directly oxidizing SiGe alloys, minimum line widths of 20nm were achieved by adjusting parameters such as the bias voltage on the microscope tip and the tip writing speed. It was found that when bias voltage increases, and/or when the tip writing ...

متن کامل

Development of a Nanostructual Microwave Probe Based on GaAs

In order to develop a new structure microwave probe, the fabrication of AFM probe on the GaAs wafer was studied. A waveguide was introduced by evaporating Au film on the top and bottom surfaces of the GaAs AFM probe. A tip having 7 μm high, 2.0 aspect ratio was formed. The dimensions of the cantilever are 250×30×15 μm. The open structure of the waveguide at the tip of the probe was obtained by ...

متن کامل

Crystallographic plane-orientation dependent atomic force microscopy-based local oxidation of silicon carbide

The effect of crystalline plane orientations of Silicon carbide (SiC) (a-, m-, and c-planes) on the local oxidation on 4H-SiC using atomic force microscopy (AFM) was investigated. It has been found that the AFM-based local oxidation (AFM-LO) rate on SiC is closely correlated to the atomic planar density values of different crystalline planes (a-plane, 7.45 cm-2; c-plane, 12.17 cm-2; and m-plane...

متن کامل

Fabrication of polystyrene latex nanostructures by nanomanipulation and thermal processing.

The capability to fabricate nanoscale structures is a fundamental step toward realizing the promise and potential of nanotechnology. We report on precise manipulation and thermal processing using 100-nm polystyrene latex nanoparticles. This approach is illustrated by fabricating a three-dimensional nanostructure by using an AFM tip to position nanoparticles and then thermally processing to "sin...

متن کامل

Stresa, Italy, 25-27 April 2007 DEVELOPMENT OF A NANOSTRUCTUAL MICROWAVE PROBE BASED ON GaAs

In order to develop a new structure microwave probe, the fabrication of AFM probe on the GaAs wafer was studied. A waveguide was introduced by evaporating Au film on the top and bottom surfaces of the GaAs AFM probe. A tip having 7 μm high, 2.0 aspect ratio was formed. The dimensions of the cantilever are 250×30×15 μm. The open structure of the waveguide at the tip of the probe was obtained by ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2011